
2007 JavaOneSM Conference | Session TS-4439 |

TS-4439

Minimalist Testing Techniques
for Enterprise Java Technology-
based Applications
Chris Richardson
Author of POJOs in Action
Chris Richardson Consulting, Inc

www.chrisrichardson.net

2007 JavaOneSM Conference | Session TS-4439| 2

What You Will Learn…

Nasty things can
happen to you when
you don’t write tests

It isn’t too difficult
to write a few fast
running tests

BUT

2007 JavaOneSM Conference | Session TS-4439| 3

About Chris
• Grew up in England
• Live in Oakland, CA
• 21 years of software

development experience
• OO development since 1986
• Java™ platform since 1996
• Java Platform, Enterprise Edition

(Java EE) since 1999
• Author of POJOs in Action
• Speaker at JavaOneSM conference,

JavaPolis, NFJS, SD West, JUGs,…
• Chair of the eBIG Java SIG in

Oakland (www.ebig.org)
• Run a consulting and training company

that helps organizations build better software faster

2007 JavaOneSM Conference | Session TS-4439| 4

Agenda

When Developers Write Tests
Fast Feedback Is Essential
Business Tier Tests
Persistence Tier Tests
Web Tier Tests
Getting Started

2007 JavaOneSM Conference | Session TS-4439| 5

The State of Developer Testing

• (Almost) Everybody agrees
that automated tests
are good idea

BUT TYPICALLY

• Developers don’t
write tests

• QA does (manual) testing

2007 JavaOneSM Conference | Session TS-4439| 6

Obstacles to Developer Testing

• Cultural obstacles to testing
• Perceived as extra work that is QA’s responsibility
• Unnecessary—“My code always works”
• Not always rewarded—paradox of excellence?
• Something new to learn

• Technical obstacles to testing
• Spaghetti code
• Some frameworks make testing difficult
• Framework developers must consider testability

2007 JavaOneSM Conference | Session TS-4439| 7

Edit and Pray Development

• You can perhaps live with few tests
at the start of a project

• But very quickly you need to change existing
code, and development slows down
• No tests—make changes very carefully
• Lots of manual testing

• More bugs ⇒ Long nights, stress,…
• Your application decays

• No one has confidence or time to refactor code
• Even slower progress
• Eventually you need to throw it away and start over

2007 JavaOneSM Conference | Session TS-4439| 8

But if You Write Tests…

• Fewer bugs that impact customers
and development

• Write new code more easily
• Automates what we are doing already—right!?
• Run fast unit tests instead of slower web application
• Use TDD to incrementally solve a problem

• Tests are a safety net
• Confidently change existing code
• Easier to refactor code to prevent decay
• The application has longer, healthier life

2007 JavaOneSM Conference | Session TS-4439| 9

POJOs Make Testing Easier

• A Plain Old Java Object
• Does not implement any special interfaces
• Does not call infrastructure APIs
• Decouples business logic from infrastructure

• Dependency injection wires components together
• Simplifies code
• Promotes loose coupling between components
• Makes it easy to pass in mocks for testing

• Aspects handle cross-cutting concerns
• Simplifies code that implements business logic
• Decouples it from infrastructure

2007 JavaOneSM Conference | Session TS-4439| 10

Agenda

When Developers Write Tests
Fast Feedback Is Essential
Business Tier Tests
Persistence Tier Tests
Web Tier Tests
Getting Started

2007 JavaOneSM Conference | Session TS-4439| 11

Fast Feedback Is Essential

• You change a complex
interest calculation

• When do you want to find
out whether it works?
• 15 minutes later after run

web tests?
• 10 seconds later after running

a hundred unit tests?
• Write unit tests at every level

• Fast running
• Easy to relate test failure

with cause

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Test

Persistence
Tier

Business
Tier

Web tier

2007 JavaOneSM Conference | Session TS-4439| 12

Fast Builds are Also Essential

• If you are good at writing tests ⇒ lots of tests
• Unit tests run very quickly but lots of functional

tests can take a long time to run
• Building and testing an application can be slow

• On some past projects it took 30-50 minutes
• Yet this had to be done prior to check-in

• Consequences
• Check-in was a big deal ⇒ rarely done
• Developers didn’t run tests ⇒ broken builds

2007 JavaOneSM Conference | Session TS-4439| 13

One Reason for Slow Tests = Going Outside
of the Virtual Machine for the Java Platform
(JVM™ Interface)

• Tests that cross JVM interface
boundaries are generally slow

• Databases are slow
• Testing at every layer ⇒ hit the

database over and over again
• Web tests tend to be slow

• JavaServer Pages™ (JSP™)
technology compilation time

• Networking

JVM

DAO

DAOTests

Database

Service

ServiceTests

Web

WebTests

The terms “Java Virtual Machine” and “JVM” mean a Virtual Machine for the Java™ platform

2007 JavaOneSM Conference | Session TS-4439| 14

Minimizing Test Times

• Solutions
• Write lots of fast running tests, i.e. unit tests
• Run different tests at different times

• Developers should run mainly fast tests
• During development run mostly unit tests
• Before check-in run some functional tests

• Continuous integration server
• Runs slower but more thorough tests
• But getting fast feedback is also important
• Consider multiple levels of CI server testing
• Use a parallelized build server

2007 JavaOneSM Conference | Session TS-4439| 15

Avoid the Boiled Frog Problem

• More development ⇒ more
tests ⇒ longer test times

• Suddenly, the tests take
too long

• But you don’t know how
to fix it

• Be vigilant! Invest in
reducing the build time
when necessary

2007 JavaOneSM Conference | Session TS-4439| 16

Agenda

When Developers Write Tests
Fast Feedback Is Essential
Business Tier Tests
Persistence Tier Tests
Web Tier Tests
Getting Started

2007 JavaOneSM Conference | Session TS-4439| 17

The Example Business Logic

debit(amount)
credit(amount)

balance

Account

amount
date

Banking
Transaction

BankingTransaction transfer(fromId, toId, amount)

MoneyTransferService

findAccount(id)

Account
Repository

<<interface>>
OverdraftPolicy

addTransaction(…)

BankingTransaction
Repository

NoOverdraft
Policy

limit

Limited
Overdraft

from

to

Does it implement the
business rules correctly?

2007 JavaOneSM Conference | Session TS-4439| 18

Testing a POJO Domain Object
public class Account {
private String accountId;
private double balance;
private OverdraftPolicy
 overdraftPolicy;
public double getBalance() {
 return balance;
}
public void debit(double amount)
{ … }
public void credit(double
 amount) { … }

public class AccountTests
 extends TestCase {
private Account account;
public void setUp() {
 account = AccountMother
 .makeAccount(10.0);
}
public void test_normal() {
 assertMoneyEquals(10.0,
 account.getBalance());
 account.debit(5);
 assertMoneyEquals(5.0,
 account.getBalance());
 account.credit(10);
 assertMoneyEquals(15.0,
 account.getBalance());
}
…Relatively easy to write tests that

run blindingly fast

2007 JavaOneSM Conference | Session TS-4439| 19

But How to Test a Service?
public class MoneyTransferServiceImpl implements MoneyTransferService {
 private final AccountRepository accountRepository;
 private final BankingTransactionRepository bankingTransactionRepository;
 public MoneyTransferServiceImpl(AccountRepository accountRepository,
 BankingTransactionRepository bankingTransactionRepository) {
 this.accountRepository = accountRepository;
 this.bankingTransactionRepository = bankingTransactionRepository;
 }
 public BankingTransaction transfer(String fromAccountId,
 String toAccountId, double amount) throws MoneyTransferException {
 Account fromAccount = accountRepository.findAccount(fromAccountId);
 Account toAccount = accountRepository.findAccount(toAccountId);
 fromAccount.debit(amount);
 toAccount.credit(amount);
 TransferTransaction txn = new TransferTransaction(fromAccount,
 toAccount, amount, new Date());
 bankingTransactionRepository.addTransaction(txn);
 return txn;
}
…

Database access

2007 JavaOneSM Conference | Session TS-4439| 20

The Slow Way: Write Integration Tests

• Each test
• Initializes the database
• Calls the service
• Verifies state of database

• But lots of database accesses ⇒ slow test
• Require lots of setup

• Setting up the database
• Initializing the database
• …

• Integration tests are valuable but…

2007 JavaOneSM Conference | Session TS-4439| 21

Faster Testing with Mock Objects

• A mock object simulates the
real object
• Returns values or throws

exceptions
• Verifies that the expected

methods are called
• Using mocks

• Simplifies tests
• Speeds up tests
• Enables an object to be

tested in isolation
• Enables top-down development

MoneyTransfer
Service

findAccount()

Mock
AccountRepository

addTransaction()

Mock
BankingTransaction

Repository

MoneyTransfer
ServiceTests

2007 JavaOneSM Conference | Session TS-4439| 22

Creating Mocks

• Write your own mocks
• Simple for interfaces but it becomes tedious
• How to mock concrete classes?

• Use a mock object framework
• jMOCK, EasyMock

• Create and configure mock object
• Specify expected method and arguments
• Define method behavior: return value

or throw exception

2007 JavaOneSM Conference | Session TS-4439| 23

Mock Objects Example: Part 1
public class MoneyTransferServiceTests extends TestCase {
protected void setUp() throws Exception {
 super.setUp();
 accountRepository = createMock(AccountRepository.class);
 bankingTransactionRepository =
 createMock(BankingTransactionRepository.class);
 service = new MoneyTransferServiceImpl(accountRepository,
 bankingTransactionRepository);
 fromAccount = AccountMother.makeAccount(100);
 toAccount = AccountMother.makeAccount(200);
 fromAccountId = fromAccount.getAccountId();
 toAccountId = toAccount.getAccountId();
}

Create
service
with mocks

2007 JavaOneSM Conference | Session TS-4439| 24

Mock Objects Example: Part 2
public class MoneyTransferServiceTests extends TestCase {
 public void testTransfer_normal() {
 expect(accountRepository.findAccount(fromAccountId)).andReturn(fromAccount);
 expect(accountRepository.findAccount(toAccountId)).andReturn(toAccount);
 bankingTransactionRepository.addTransaction(isA(BankingTransaction.class));
 replay(accountRepository, bankingTransactionRepository);
 BankingTransaction result = service.transfer(fromAccountId, toAccountId, 50);
 assertNotNull(result);
 assertMoneyEquals(50.0, fromAccount.getBalance());
 assertMoneyEquals(250.0, toAccount.getBalance());
 verify(accountRepository, bankingTransactionRepository);
 }

2007 JavaOneSM Conference | Session TS-4439| 25

Downsides of Mocks

• Testing the collaboration of objects =
white box testing

• Tests can be brittle
• Change design without changing what it does ⇒

failing tests
• Discourages developers from writing tests

• Fortunately, many collaborations are stable
• e.g. between services and repositories

• Mock selectively!

2007 JavaOneSM Conference | Session TS-4439| 26

Agenda

When Developers Write Tests
Fast Feedback Is Essential
Business Tier Tests
Persistence Tier Tests
Web Tier Tests
Getting Started

2007 JavaOneSM Conference | Session TS-4439| 27

Persistence Tier Components

<<interface>>
Account

Repository

<<interface>>
BankingTransaction

Repository

Hibernate
AccountRepository

Hibernate
BankingTransaction

Repository

Hibernate

Session

<hibernate-mapping
package="net.chrisrichardson.bankingExample.domain"
 default-access="field">

 <class name="Account" table="BANK_ACCOUNT" >
 <id name="id" column="ACCOUNT_ID">
 <generator class="native" />
 </id>
 <property name="balance" column="BALANCE" />
 …
 </class>
….
</hibernate-mapping>

Query

Can my application create,
find, update and delete
persistent objects?

Does the data end up in the
correct table/column?

2007 JavaOneSM Conference | Session TS-4439| 28

The Slow Way to Test

• Write lots of tests that bang against the database
• Initialize the database
• Load an object
• Save an object
• Verify the state of the database

• Drawbacks
• Lots of database access ⇒ slow
• Need to initialize the database ⇒ difficult to write

• We still need some tests like this but we
can do better…

2007 JavaOneSM Conference | Session TS-4439| 29

Avoid the DB #1:
Mock the ORM Framework

• Problem
• Bugs in the logic of the DAOs
• Testing against the database

is slow
• Solution

• Mock the ORM
framework APIs

Mock
Hibernate

findAccount(id)

HibernateAccount
DAO

testFindAccount()

HibernateAccount
DAOTests

2007 JavaOneSM Conference | Session TS-4439| 30

Avoid the DB #2:
Test the O/R Mapping

• Problem
• Incorrectly defined mapping,
• e.g. forgetting to map a field is a common bug
• But tests that save objects and check the contents of the

DB are slow to execute and tedious to write
• Solution

• Read XML O/RM and make assertions about it
• ORMUnit framework makes this easy to do

class BankingMappingTests extends HibernateMappingTests {
 public void testAccount() {
 assertClassMapping(Account.class, "BANK_ACCOUNT");
 assertAllFieldsMapped();
 }
…

2007 JavaOneSM Conference | Session TS-4439| 31

Faster Tests #1:
Use an In-memory DB

• For example: HSQLDB
• Typically much faster than a traditional DB

• Committing transactions
• Recreating the schema

• No install—it’s just a Java Archive (JAR) file
• O/RM = DB portability ⇒ makes this easy
• Issues

• Difficult to do if using hand-coded SQL
• Some incompatibilities: e.g. time precision

2007 JavaOneSM Conference | Session TS-4439| 32

Faster Tests #2:
Rollback Transactions

• Execute entire test in a transaction,
which is rolled back

• Tests run faster
• Leaves the database unchanged
• Issues to consider

• Single transaction ⇒ Single Session/EntityManager ⇒
potentially very different behavior

• Commit-time constraints not checked
• Code in a different JVM interface can’t

see the changes

332007 JavaOneSM Conference | Session TS-4439 |

DEMO
Walkthrough Persistence Tests Code

2007 JavaOneSM Conference | Session TS-4439| 34

Agenda

When Developers Write Tests
Fast Feedback Is Essential
Business Tier Tests
Persistence Tier Tests
Web Tier Tests
Getting Started

2007 JavaOneSM Conference | Session TS-4439| 35

Web Tier Design
Web tier

JSP 1

JSP 2

….

Web class 1

Web class 2

...

HTTP request

HTTP response: HTML/….

JSF Managed Beans
Struts Action

Spring MVC controllers
…..

View Templates:
JSP, Velocity, …

Do the links, buttons
and fields exist and
behave as expected?

2007 JavaOneSM Conference | Session TS-4439| 36

Unit Test Web Components

• Simulate HTTP request
• Request parameters
• Cookies
• Session state
• …

• Use mocks for services
• Verify

• Service invocation
• View selection
• Data passed to view

2007 JavaOneSM Conference | Session TS-4439| 37

Web Application Testing

• Simulate a user clicking and typing in a browser
• Superficial tests

• Test happy paths
• Easy way to test basic functionality

• More thorough tests
• Test lots of different scenarios
• Lots of work

2007 JavaOneSM Conference | Session TS-4439| 38

Web Testing With Selenium

• Selenium
• Open source web application testing tool
• Tests run in a real browser (IE/Firefox/…)

• Three components
• Core = JavaScript™ technology library that runs

in the browser
• IDE = Firefox plug-in for recording

and executing tests
• Remote Control (RC) = framework for writing

automated tests in Java/.NET/Ruby/…

2007 JavaOneSM Conference | Session TS-4439| 39

Selenium RC—Code Example
public WebTest extends … {
 public void setUp() throws Exception {
 …
 selServer = new SeleniumServer();
 selServer.start();
 selenium = new DefaultSelenium("localhost", selServer.getPort(),
 "*iexplore",
 "http://localhost:8080");
 selenium.start();
 }

 public void testCreateProject(Selenium selenium) {
 selenium.open("/ptrack/acegilogin.jsp");
 selenium.type("j_username", "proj_mgr");
 selenium.type("j_password", "faces");
 selenium.click("Login");
 …
 }

2007 JavaOneSM Conference | Session TS-4439| 40

Starting and Stopping
the Web Container

• Testing with an embedded web container
• e.g. Jetty
• Avoids having to build a WAR
• Typically starts up faster

• Testing with a web container in a separate JVM
interface
• Typically slower
• Requires a WAR to be built

• Use the Cargo open-source framework
• Installs/starts/stops web containers
• Deploys/un-deploys web applications
• Java API, Maven Plug-in, Ant tasks, IDE plug-ins

2007 JavaOneSM Conference | Session TS-4439| 41

Cargo Example
public WebTest extends … {
 public void setUp() throws Exception {
 ZipURLInstaller installer = new ZipURLInstaller(
 new URL("http://apache.tradebit.com/.../jakarta-tomcat-5.0.28.zip"),
 new File(tempDir, "tomcat-install"));
 installer.install();
 Tomcat5xStandaloneLocalConfiguration config = new
 Tomcat5xStandaloneLocalConfiguration(
 new File(tempDir, "tomcat-deploy"));
 config.setProperty(ServletPropertySet.PORT, "8080"));
 WAR war = new WAR(locateWAR("webapp/target/ptrack.war"));
 config.addDeployable(war);
 container = new Tomcat5xInstalledLocalContainer(config);
 File home = installer.getHome();
 container.setHome(home);
 container.start();
 …
 }

422007 JavaOneSM Conference | Session TS-4439 |

DEMO
Review and Run Selenium/Cargo Test Code

2007 JavaOneSM Conference | Session TS-4439| 43

Speeding Up Web Tests

• Web tests can be slow
• Lots of inter-process communication
• Database access
• JSP technology page compilation

• Minimize start and stops of browser and web application
• JUnit Decorator that starts browser/server once for a set of tests
• TestNG @BeforeClass

• Don’t run all the web tests on developer’s desktop, e.g.
• Only run embedded web container tests
• Only run a subset of the tests

2007 JavaOneSM Conference | Session TS-4439| 44

Agenda

When Developers Write Tests
Fast Feedback Is Essential
Business Tier Tests
Persistence Tier Tests
Web Tier Tests
Getting Started

2007 JavaOneSM Conference | Session TS-4439| 45

Getting Started Incrementally

• Existing application = lots of code
• Impractical to stop and create tests

for everything
• Need an incremental strategy

2007 JavaOneSM Conference | Session TS-4439| 46

Install Continuous Integration Server
(If you Haven’t Already)
e.g. CruiseControl

2007 JavaOneSM Conference | Session TS-4439| 47

Create Some Web UI Tests

• Use Selenium IDE
to create basic tests
• Push buttons
• Click links
• …

• Run
• Before check-in
• With CruiseControl

482007 JavaOneSM Conference | Session TS-4439 |

DEMO
Recording a Web Test With Selenium IDE

2007 JavaOneSM Conference | Session TS-4439| 49

Write More Tests When…

• Fixing a bug
• Write a functional web UI test
• Write a low-level unit test

• Working on a component
• Write characterization tests for existing behavior
• Write some tests for the new behavior
• Make the tests pass

2007 JavaOneSM Conference | Session TS-4439| 50

If Your Code = Big Ball of Mud

• This won’t stop you
writing functional tests

• But it’s difficult to write
unit tests

2007 JavaOneSM Conference | Session TS-4439| 51

Summary

• Bad things can happen without tests
• Development slows down
• The application decays
• It can be a downward spiral

• Writing some basic tests isn’t that difficult
• Write tests for the POJO business logic
• Test the OR/M mapping metadata
• Use Selenium for web testing
• Incrementally write tests for existing code

• Just do it!

2007 JavaOneSM Conference | Session TS-4439| 52

For More Information

• Send email
• chris@chrisrichardson.net

• ORMUnit website
• http://code.google.com/p/ormunit/

• ProjectTrack Sample Code
• http://code.google.com/p/projecttrack/

• My website for other resources
• www.chrisrichardson.net

• Other sessions
• TS-7082—Building JavaServer Faces Applications

with Spring and Hibernate
• BOF-7846—The Long-Tail Treasure Trove
• BOF-6825—Testing Web 2.0 Features,

Using Real-World Applications
• TS-4588—Advanced Enterprise Debugging Techniques

532007 JavaOneSM Conference | Session TS-4439 |

Q&A

2007 JavaOneSM Conference | Session TS-4439 |

TS-4439

Minimalist Testing Techniques
for Enterprise Java Technology-
based Applications
Chris Richardson
Author of POJOs in Action
Chris Richardson Consulting, Inc.

www.chrisrichardson.net

