
6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

1

Overview of POJO programming

A simpler, faster way to build long-lived applications

by

Chris Richardson
chris@chrisrichardson.net

http://www.chrisrichardson.net

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

2

About Chris…
Grew up in England
Live in Oakland
Twenty years of software
development experience

Building object-oriented
software since 1986
Using Java since 1996
Using J2EE since 1999

Author of POJOs in Action
Run a consulting company
that helps organizations
build better software
faster
Chair of the eBIG Java SIG
in Oakland (www.ebig.org)

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

3

Overview

POJOs + lightweight frameworks:
Simplify development
Accelerate development
Make applications immune to the
volatility of enterprise Java technology

Focus on the “backend” frameworks:
Business tier
Database access tier

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

4

Agenda

The trouble with traditional
enterprise Java frameworks
Overview of POJOs
Assembling POJO applications with
dependency injection
Persisting POJOs with Hibernate
Making POJOs transactional with
Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

5

Classic EJB architecture example

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

6

Problems with intertwined business
logic and infrastructure

Upgrading to new, better version of
infrastructure framework is
difficult/impossible:

Enterprise Java (1998-2006):
Incompatible standards: EJB 1, EJB 2, EJB 3
Many persistence options: EJB CMP 1/2,
Hibernate 1/2/3, JDO 1/2, EJB 3 persistence

Makes development more difficult
Forced to think about business logic +
infrastructure concerns simultaneously
Developers need to know both

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

7

…problems

Makes testing more difficult
Must deploy code/tests in application
server
Slows down the edit-compile-debug cycle

EJB 2 prevented OO development
EJB application servers are

Complex
Expensive (some)

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

8

EJB as a cult
In 1999 I readily embraced EJBs and its development
rituals:

writing DTOs and unused lifecycle methods
Waiting for EJBs to deploy

According to http://en.wikipedia.org/wiki/Cult

“a cult is a relatively small and cohesive group of people
devoted to beliefs or practices that the surrounding
culture or society considers to be far outside the
mainstream”

But there is a better way….

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

9

Agenda

The trouble with traditional
enterprise Java frameworks
Overview of POJOs
Assembling POJO applications with
dependency injection
Persisting POJOs with Hibernate
Making POJOs transactional with
Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

10

POJO = Plain Old Java Object

Java objects that don't implement
any special interfaces or (perhaps)
call infrastructure APIs
Coined by Martin Fowler, Rebecca
Parsons, and Josh MacKenzie to make
them sound just as exciting as
JavaBeans, Enterprise JavaBeans
Simple idea with surprising benefits

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

11

POJO application design

POJO facade

Domain model Database
access

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

12

POJO code example

Simple Java classes
No lookup code – uses dependency
injection instead

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

13

But POJOs are insufficient…
⇒ Lightweight frameworks

Endow POJOs with enterprise features
Object/relational mapping framework:

Persists POJOs
JDO, Hibernate, JPA, …

Spring framework:
Popular open-source framework
Declarative transaction management
Dependency injection
Remoting, security, …

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

14

Key point: non-invasive frameworks

Provide services without the application:
Implementing interfaces
Calling APIs

Configured using metadata:
XML
Java 5 annotations

POJOs + non-invasive frameworks ⇒
simple, faster development of applications
that are immune to infrastructure changes

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

15

Deployment options
Web container-only server

Tomcat or Jetty
Simple yet sufficient for many applications

Full-blown server
WebLogic, JBoss, WebSphere
Richer set of features
Enhanced manageability and availability
JTA
JMS
…

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

16

Benefits of using POJOs

Separation of concerns
Business logic is decoupled from infrastructure
Switch frameworks or upgrade more easily
Not everybody has to be an infrastructure framework expert

Simpler development
Think about one thing at a time
Business logic, persistence, transaction management….

Faster development
Testing without an application server (or a database)
No deployment to slow you down

More maintainable
Modular object-oriented code
Loosely coupled design

Simpler, perhaps cheaper deployment
Deploy in a web-container only server

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

17

Drawbacks of POJOs…

…none except that lightweight
frameworks have their limitations
Use EJBs if you need:

Distributed transactions initiated by a
remote client
Some application server-specific features
…

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

18

Agenda

The trouble with traditional
enterprise Java frameworks
Overview of POJOs
Assembling POJO applications
with dependency injection
Persisting POJOs with Hibernate
Making POJOs transactional with
Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

19

Dependency injection
Application components depend
on:

One another
Infrastructure components

Using JNDI or the new operator:
Introduces coupling
Complexity

Solution:
Pass dependencies to a
component
Setter injection
Constructor injection

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

20

Dependency injection example

public class MoneyTransferServiceImpl
…

public MoneyTransferServiceImpl(
AccountRepository

accountRepository, …)
{

this.accountRepository =
accountRepository;

…
}

public class HibernateAccountRepository
implements AccountRepository {

…
}

You can implement dependency injection by hand but ….

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

21

Spring lightweight container

Lightweight container = sophisticated
factory for creating objects
Spring bean = object created and
managed by Spring
You write XML that specifies how to:

Create objects
Initialize them using dependency injection

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

22

Spring code example
public class MoneyTransferServiceImpl
…

public MoneyTransferServiceImpl(
AccountRepository

accountRepository, …)
{

this.accountRepository =
accountRepository;

…
}

<bean name="MoneyTransferService"
class="MoneyTransferServiceImpl">

<constructor-arg ref="AccountRepository"/>
…

</bean>

<bean name="AccountRepository"
class="HibernateAccountRepository">

…
</bean>

public class HibernateAccountRepository
implements AccountRepository {

…
}

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

23

Spring 2 – dependency injection
into entities

Domain model entities
need to access
repositories/DAOs/etc
But they are created by
the application or by
Hibernate – not Spring
Passing repositories as
method parameters from
services clutters the code
Spring 2 provides
AspectJ-based
dependency injection
into entities
Constructors
automatically invoke
Spring

@Configurable("pendingOrder")
public class PendingOrder {

private RestaurantRepository restaurantRepository;

public void
setRestaurantRepository(RestaurantRepository

restaurantRepository) {
this.restaurantRepository =

restaurantRepository;
}

<aop:spring-configured />

<bean id="pendingOrder" lazy-init="true">
<property name="restaurantRepository"

ref="RestaurantRepositoryImpl"
/>

</bean>

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

24

Benefits of dependency injection

Simplifies code
No calls to JNDI

Decouples components from:
One another
Infrastructure

Simplifies testing
Pass in a mock/stub during testing

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

25

Mock object code example

Test the MoneyTransferServiceImpl
without calling the real
AccountRepository

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

26

Agenda

The trouble with traditional
enterprise Java frameworks
Overview of POJOs
Assembling POJO applications with
dependency injection
Persisting POJOs with Hibernate
Making POJOs transactional with
Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

27

POJO persistence

Use an object/relational framework:
Metadata maps the domain model to the
database schema
ORM framework generates SQL statements

Hibernate
Very popular open-source project

JDO
Standard from Sun – JSR 12 and JSR 243
Multiple implementations: Kodo JDO, JPOX

EJB 3/Java Persistence API (JPA)

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

28

Hibernate: code example

Provides transparent persistence
Pieces:

Account
HibernateBankingExample.hbm.xml
HibernateAccountPersistenceTests
HibernateAccountRepository
HibernateAccountRepositoryTests
Spring beans

Only the repositories/DAOs call persistence
framework APIs

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

29

ORM framework features 1
Declarative mapping

Map classes to tables; fields to columns; relationships to foreign
keys and join tables

CRUD API
E.g. Hibernate Session, JPA EntityManager

Query language
Retrieve objects satisfying search criteria

Transaction management
Manual transaction management
Rarely call directly – used by Spring

Detached objects
Detach persistent objects from the DB
Eliminates use of DTOs
Supports edit-style use cases

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

30

ORM framework features 2
Lazy loading

Provide the illusion that objects are in memory
But loading all objects would be inefficient

⇒ load an object when it is first accessed
Eager loading

Loading objects one at a time can be inefficient
⇒ load multiple objects per-select statement

Caching
Database often the performance bottleneck
⇒ cache objects in memory whenever you can
Easy for readonly objects
Optimistic locking and cache invalidation for changing
objects

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

31

O/R mapping framework benefits
Improved productivity

High-level object-oriented API
Less Java code to write
No SQL to write

Improved performance
Sophisticated caching
Lazy loading
Eager loading

Improved maintainability
A lot less code to write

Improved portability
ORM framework generates database-specific SQL for you

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

32

When and when not to use an
ORM framework

Use when the application:
Reads a few objects, modifies them, and writes
them back
Doesn’t use stored procedures (much)

Don’t use when:
Simple data retrieval ⇒ no need for objects
Lots of stored procedures ⇒ nothing to map to
Relational-style bulk updates ⇒ let the database
do that
Some database-specific features ⇒ not
supported by ORM framework

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

33

Agenda

The trouble with traditional
enterprise Java frameworks
Overview of POJOs
Assembling POJO applications with
dependency injection
Persisting POJOs with Hibernate
Making POJOs transactional with
Spring

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

34

Making POJOs transactional

EJB 2 container-managed
transactions are great
Spring provides declarative
transactions for POJOs
Similar to CM transactions but

Runs outside of an application server
More flexible exception handling

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

35

Spring AOP
AOP enables the modular implementation of crosscutting
concerns
Spring AOP = simple, effective AOP implementation
Lightweight container can wrap objects with proxies
Proxy executes extra code:

Before original method
After original method
Instead of…

Spring uses proxies for:
transaction management
security
tracing
…

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

36

Spring TransactionInterceptor

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

37

Spring code example
<bean

name="AccountManagementFacade“
class="AccountManagementFacadeImpl">
…

</bean>

<bean id="transactionProxyCreator“
class=“...BeanNameAutoProxyCreator">
<property name="beanNames">

<list>
<idref

bean="AccountManagementFacade"/>
</list>

</property>
<property name="interceptorNames">

<list>
<idref

bean="BankingTransactionInterceptor"/>
</list>

</property>
</bean>

<bean id="myTransactionManager"
class="HibernateTransactionManager">

…
</bean>

<bean
id="BankingTransactionInterceptor"
class="TransactionInterceptor">
<property name="transactionManager"

ref="myTransactionManager"/>
</bean>

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

38

Spring 2 – simplified XML
<bean

name="AccountManagementFacade“
class="AccountManagementFacadeImpl">
…

</bean>

<aop:config>
<aop:advisor
pointcut="execution(* *..*Facade.*(..))"

advice-ref="txAdvice"/>
</aop:config>

<bean id="transactionManager"

class="HibernateTransactionManager">
…
</bean>

<tx:advice id="txAdvice">
<tx:attributes>

<tx:method name="*"/>
</tx:attributes>

</tx:advice>

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

39

Spring remoting
Remoting

Spring HTTP
Hessian/Burlap
RMI
…

Server uses a
<Xyz>Exporter bean

Service to expose
Interface to expose

Client uses a
<Xyz>ProxyFactoryBean

URL to remote service

<bean name="/accountManagement"
class="org.springframework.remoting.httpi
nvoker.
HttpInvokerServiceExporter">

<property name="service"
ref="TransferFacade"/>

<property name="serviceInterface“
value="net.chrisrichardson…TransferFacade“

/>
</bean>

<bean id="httpInvokerProxy"
class="org.springframework.remoting.httpi
nvoker.

HttpInvokerProxyFactoryBean">
<property name="serviceUrl"

value="http://somehost:8080/accountManage
ment"/>

<property name="serviceInterface“
value="net.chrisrichardson…TransferFacade“

/>
</bean>

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

40

Spring Security
Acegi Security

Open source project
Extension to Spring

MethodSecurityInterceptor
Verifies that caller is
authorized

Invoke method
Access instances

<bean id=“transferSecurity"
class="org.acegisecurity.inter
cept.method.aopalliance.

MethodSecurityInterceptor">
…
<property

name="objectDefinitionSource">
<value>

net.chrisrichardson…
TransferFacade.*=

ROLE_CUSTOMER, ROLE_CSR
</value>

</property>

</bean>

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

41

Deploying a Spring application
Often packaged as a
WAR
Web.xml lists bean
definition files
ServletContextListener
creates Spring bean
factory
Web tier is either:

Injected with Spring
beans
Calls getBean()

<web-app>

<context-param>
<param-name>contextConfigLocation
</param-name>

<param-value>
/beans1.xml
/beans2.xml
</param-value>

</context-param>

<listener>
<listener-class>

org.springframework.web.context.C
ontextLoaderListener

</listener-class>
</listener>

..

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

42

Summary

Simplify development
Accelerate development
Improve maintainability
Increase immunity to
rapidly evolving
infrastructure
frameworks

POJOs

+ =

Non-invasive
frameworks

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

43

For more information
Buy my book ☺

Send email:
chris@chrisrichardson.net

Visit my website:

http://www.chrisrichardson.net

Please hand in your
session evaluations

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

44

Extra slides

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

45

Thoughts about EJB 3 and POJOs
☺ Better than EJB2
☺ Supports POJOs
☺ Reasonable ORM
☺ Entity beans = JPA
☺ Annotations are

concise
☺ Has dependency

injection
☺ It’s a standard

Less powerful than
Spring, e.g. DI relies
on JNDI
Less powerful than
Hibernate, e.g.
List<String>
Session beans/MDBs
must be deployed
Complexity of EJB
lurking within
Annotations couple
your code to EJB3
EJB’s poor track record
as a standard

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

46

Using Spring with EJBs

Simplify EJB client code with Spring
Spring encapsulates JNDI lookup
Client gets EJB reference from Spring
Better: Client is injected with EJB reference

Move business logic into Spring beans
Session EJBs delegate to Spring beans
Use Spring dependency injection
Simpler code, easier testing

Simplify DAOs with Spring JDBC
Eliminates error-prone boilerplate code

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

47

Migrating to POJOs – part 1

2 year old application:
Session EJBs
Entity Bean-based domain model
Some JDBC DAOs
Beginning development of version 2

Replaced entity beans with Hibernate:
WAS vs. WLS portability
Test business logic without persistence
Test persistence without a server
A much richer domain model

6/20/2006 Copyright (c) 2006 Chris
Richardson. All rights reserved.

48

Migrating to POJOs – part 2

Used Spring beans for V2 code
Incrementally replaced V1 session
beans with Spring beans when:

Enhancing it
V2 code needed to call V1 code

End result:
Richer domain model
Faster development
V2 code was deployable as a web app.

